Abstract
Replication-competent oncolytic adenovirus (TOA2) gene therapy is a recently introduced anti-tumor treatment regimen with superior results. The biodistribution studies of virus vector-based medicine seem more cautious and have been given much attention recently in terms of its quality and safety in preclinical trials. The current study determined the biodistribution and safety of a replication-competent adenovirus in different organs to predict its toxicity threshold. The present study has used TOA2, while biodistribution analysis was performed in human lung carcinoma A549-induced tumor-bearing nude mice model. Intratumoral injection was applied onto tumor-bearing mice with the adenovirus (3×1010 VP per mouse). Mice were sacrificed at the end of the experiment and the organs were dissected. Biodistribution analysis was done with complete hexon gene detection in each organ using quantitative real-time polymerase chain reaction (qRT-PCR). The biodistribution and concentration profiles showed that the TOA2 is well distributed in the entire tumor tissue. After dose 3 at day 11, the concentration of the virus has increased in the tumor tissue from 2240.54 (± 01.69) copies/100 ng genome to 13,120.28 (± 88.21) copies/100 ng genome on the 18th day, which eventually approached 336.45 (± 23.41) copies/100ng genome on the day 36. On the contrary, the concentration of the same decreased in the order of the liver, kidney, spleen, lung, and heart over time but no distributional traces in gonads. But the concentration found decreased dramatically in blood and other organs, while at the end of the experiment no detectable distribution was seen besides tumor tissue. The study confirms that adenovirus-based tumor therapy using conditionally replicating competent oncolytic TOA2 exhibited great efficiency with no toxicity at all.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.