Abstract

This paper presents proofs of the strong law of large numbers and the central limit theorem for estimators of the parameters in quite general finite-parameter linear models for vector time series. The estimators are derived from a Gaussian likelihood (although Gaussianity is not assumed) and certain spectral approximations to this. An important example of finite-parameter models for multiple time series is the class of autoregressive moving-average (ARMA) models and a general treatment is given for this case. This includes a discussion of the problems associated with identification in such models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.