Abstract

The weighted least-squares solutions of coupled singular matrix equations are too difficult to obtain by applying matrices decomposition. In this paper, a family of algorithms are applied to solve these problems based on the Kronecker structures. Subsequently, we construct a computationally efficient solutions of coupled restricted singular matrix equations. Furthermore, the need to compute the weighted Drazin and weighted Moore–Penrose inverses; and the use of Tian's work and Lev-Ari's results are due to appearance in the solutions of these problems. The several special cases of these problems are also considered which includes the well-known coupled Sylvester matrix equations. Finally, we recover the iterative methods to the weighted case in order to obtain the minimum D-norm G-vector least-squares solutions for the coupled Sylvester matrix equations and the results lead to the least-squares solutions and invertible solutions, as a special case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.