Abstract

In this paper a phenomenological approach, based on a generalization in two dimensions of the classical scalar Preisach model, is exploited and identified to reproduce the magnetization curves obtained by accurate micromagnetic simulations of both isotropic and anisotropic polycrystalline Fe–Si films with different values of the anisotropy constants. The identification problem is realized using a suitable set of analytical equations and performing a best fit procedure to the data obtained from micromagnetic simulations of both scalar and rotational loops. The correct reconstruction of all the magnetization processes, as well as of the associated magnetic losses, is achieved through the choice of a small number of either circular or elliptical hysterons, as well as by the implementation of a simple “moving technique” that is necessary to take into account the non-collinearity between the field and the magnetization that occurs in presence of a global uniaxial anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.