Abstract
Localization in unknown environments using low-cost sensors remains a challenge. This paper presents a new localization approach that learns the spatial variation of an observed continuous signal. We model the signal as a piece-wise linear function and estimate its parameters using a simultaneous localization and mapping (SLAM) approach. We apply our framework to a sensor measuring bearing to active beacons where measurements are systematically distorted due to occlusion and signal reflections of walls and other objects present in the environment. Experimental results from running GraphSLAM and EKF-SLAM on manually collected sensor measurements as well as on data recorded on a vacuum-cleaner robot validate our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.