Abstract
The problem of vector field approximation arises in the wide range of fields such as motion control, computer vision and so on. This paper proposes a method for reconstructing an entire continuous vector field from a sparse set of sample data by training neural networks. In order to make approximation results possess inherent properties of vector fields and to attain reasonable approximation accuracy with computational efficiency, we include a priori knowledge on inherent properties of vector fields into the learning problem of neural networks, which we call model inclusive learning. An efficient learning algorithm of neural networks is derived. It is shown through numerical experiments that the proposed method makes it possible to reconstruct vector fields accurately and efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.