Abstract

We define weakly minimal elements of a set with respect to a convex cone by means of the quasi-interior of the cone and characterize them via linear scalarization, generalizing the classical weakly minimal elements from the literature. Then we attach to a general vector optimization problem, a dual vector optimization problem with respect to (generalized) weakly efficient solutions and establish new duality results. By considering particular cases of the primal vector optimization problem, we derive vector dual problems with respect to weakly efficient solutions for both constrained and unconstrained vector optimization problems and the corresponding weak, strong and converse duality statements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.