Abstract
Vector decomposition of P- and S-wave modes from elastic seismic wavefields is a key step in elastic reverse-time migration (ERTM) to effectively improve the multi-wave imaging accuracy. Most previously developed methods based on the apparent velocities or the polarization characteristics of different wave modes are unable to accurately achieve the vector decomposition of P- and S-wave modes. To effectively overcome the shortcomings of conventional methods, we develop a vector decomposition method of P- and S-wave modes using self-attention deep convolutional generative adversarial networks (SADCGANs) to effectively separate the horizontal and vertical components of P- and S-wave modes from elastic seismic wavefields and accurately preserve their amplitude and phase characteristics for isotropic elastic media. For an elastic model, we use many time slices for a given source position to train the neural network, and use other time slices not in this training dataset to test the neural network. Numerical examples of different models demonstrate the effectiveness and feasibility of our developed method and indicate that it provides an effective intelligent data-driven vector decomposition method of P- and S-wave modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.