Abstract

Direction-finding capability has recently been advanced by synergies between the customary approach of inter ferometry and the new approach of “vector cross product” based Poynting-vector estimator. The latter approach measures the incident electromagnetic wavefield for each of its six electromagnetic components, all at one point in space, to allow a vector cross-product between the measured electric-field vector and the measured magnetic-field vector. This would lead to the estimation of each incident source's Poynting-vector, which (after proper norm-normalization) would then reveal the corresponding Cartesian direction-cosines, and thus the azimuth-elevation arrival angles. Such a “vector cross product” algorithm has been predicated on the measurement of all six electromagnetic components at one same spatial location. This physically requires an electromagnetic vector-sensor, i.e., three identical but orthogonally oriented electrically short dipoles, plus three identical but orthogonally oriented magnetically small loops-all spatially collocated in a point-like geometry. Such a complicated “vector-antenna” would require exceptionally effective electromagnetic isolation among its six component-antennas. To minimize mutual coupling across these collocated antennas, considerable antennas-complexity and hardware cost could be required. Instead, this paper shows how to apply the “vector cross-product” direction-of-arrival estimator, even if the three dipoles and the three loops are located separately (instead of collocating in a point-like geometry). This new scheme has great practical value, in reducing mutual coupling, in simplifying the antennas hardware, and in sparsely extending the spatial aperture to refine the direction-finding accuracy by orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.