Abstract

A theoretical study of the orientation of product rotational angular momenta for two chemical reaction channels: F + HD(ν r = 0, j r = 0) → HF(ν, j) + D and F + HD(ν r = 0, j r = 0) → DF(ν, j) + H at a E coll = 78.54 meV collision energy was performed. Angular momentum orientation was described on the basis of irreducible tensor operators (state multipoles) expressed through anisotropy transfer coefficients, which contained quantum-mechanical scattering T matrices determined on the basis of exact solutions to quantum scattering equations obtained using the hyperquantization algorithm. The possibility of the existence of substantial orientation of the angular momentum of reaction products j in the direction perpendicular to the scattering plane was demonstrated. The dependences of differential reaction cross sections and state multi-poles on the ν and j quantum numbers were calculated and analyzed. A experimental scheme based on the multiphoton ionization method was suggested. The scheme can be used to detect predicted reaction product angular momentum orientation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call