Abstract
It is a famous result due to G. Horrocks [Proc. Lond. Math. Soc. (3) 14, 689-713 (1964; Zbl 0126.16801)] that line bundles on a projective space are the only indecomposable vector bundles without intermediate cohomology. This fact generalizes to quadric and grassmannians if we add cohomological conditions. In this paper the case of G(1, 4) is studied completely, and a characterization-classification of vector bundles on it without intermediate cohomology is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.