Abstract
Let X be a smooth prime Fano threefold of genus 7 and let Γ be its homologically projectively dual curve. We prove that, for d ≥ 6, an irreducible component of the moduli scheme MX(2, 1, d) of rank-2 stable sheaves on X with c1= 1, c2= d is birational to a generically smooth (2d - 9)-dimensional component of the Brill–Noether variety [Formula: see text] of stable vector bundles on Γ of rank d - 5 and degree 5d-24 with at least 2d - 10 independent global sections. The space MX(2, 1, 6) is proved to be isomorphic to [Formula: see text], and to be a smooth irreducible threefold if X is general enough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.