Abstract
Let C be a curve of genus two. We denote by [Formula: see text] the moduli space of semi-stable vector bundles of rank 3 and trivial determinant over C, and by Jd the variety of line bundles of degree d on C. In particular, J1 has a canonical theta divisor Θ. The space [Formula: see text] is a double cover of ℙ8 = |3Θ| branched along a sextic hypersurface, the Coble sextic. In the dual [Formula: see text], where J1 is embedded, there is a unique cubic hypersurface singular along J1, the Coble cubic. We prove that these two hypersurfaces are dual, inducing a non-abelian Torelli result. Moreover, by looking at some special linear sections of these hypersurfaces, we can observe and reinterpret some classical results of algebraic geometry in a context of vector bundles: the duality of the Segre–Igusa quartic with the Segre cubic, the symmetric configuration of 15 lines and 15 points, the Weddle quartic surface and the Kummer surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.