Abstract

We give the general presciption for calculating the moduli of irreducible, stable SU(n) holomorphic vector bundles with positive spectral covers over elliptically fibered Calabi-Yau threefolds. Explicit results are presented for Hirzebruch base surfaces B=F_r. The transition moduli that are produced by chirality changing small instanton phase transitions are defined and specifically enumerated. The origin of these moduli, as the deformations of the spectral cover restricted to the ``lift'' of the horizontal curve of the M5-brane, is discussed. We present an alternative description of the transition moduli as the sections of rank n holomorphic vector bundles over the M5-brane curve and give explicit examples. Vector bundle moduli appear as gauge singlet scalar fields in the effective low-energy actions of heterotic superstrings and heterotic M-theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.