Abstract

Let M be a smooth manifold and F a Morse-Bott foliation with a compact critical manifold Σ⊂M. Denote by D(F) the group of diffeomorphisms of M leaving invariant each leaf of F. Under certain assumptions on F it is shown that the computation of the homotopy type of D(F) reduces to three rather independent groups: the group of diffeomorphisms of Σ, the group of vector bundle automorphisms of some regular neighborhood of Σ, and the subgroup of D(F) consisting of diffeomorphisms fixed near Σ. Examples of computations of homotopy types of groups D(F) for such foliations are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.