Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions.
Highlights
The plant vascular system is a rich source of nutrients and represents a transport pathway for colonizers
Devastating outbreaks of citrus greening disease, Pierce’s disease, and zebra chip disease in recent years have contributed to a rapid growth in the literature on bacterial plant pathogens and their hemipteran vectors (Haapalainen, 2014; Almeida and Nuney, 2015; Orlovskis et al, 2015)
Whereas most plant-infecting viruses depend on hemipterans for transmission, most plantinfecting bacteria do not
Summary
The plant vascular system is a rich source of nutrients and represents a transport pathway for colonizers. We review the current mechanistic knowledge of interactions shared among vector-borne bacteria, hemipteran vectors, and host plants. Dozens of crops and native plants are hosts for X. fastidiosa and a diverse array of vectors transmits the pathogen compared to other species of vector-borne bacteria (Redak et al, 2004).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.