Abstract
We present in this talk recent results of the vector and axial-vector transitions of the nucleon to the pentaquark baryon Θ+, based on the SU(3) chiral quark-soliton model. The results are summarized as follows: K*NΘ vector and tensor coupling constants turn out to be gK*NΘ ≃ 0.81 and fK*NΘ ≃ 0.84, respectively, and the KNΘ axial-vector coupling constant to be [Formula: see text]. As a result, the total decay width for Θ+ → NK becomes very small: ΓΘ→NK ≃ 0.71 MeV , which is consistent with the DIANA result ΓΘ→NK = 0.36 ± 0.11 MeV .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.