Abstract

Canada bluejoint grass ( Calamagrostis canadensis (Michx.) Beauv.) is a very competitive understory species and can create a thick litter layer that may decrease tree growth in white spruce ( Picea glauca (Moench.) Voss) stands in the boreal region. We examined the effects of Canada bluejoint grass dominated understory competition, N fertilization, and litter layer removal on the nutrition and growth of white spruce, in relation to soil N availability in a 13-year-old plantation near Whitecourt, Alberta, Canada, in 2003 and 2004. We hypothesized that: (1) understory competition reduces white spruce growth as a result of competition for available N; (2) litter layer removal increases white spruce growth by increasing soil temperature and N availability; (3) N fertilization improves white spruce growth by increasing N availability. Soil gravimetric moisture content in LFH was reduced by understory competition and litter layer removal in 2003, which had a very dry summer. Understory removal increased white spruce diameter growth, 100-needle biomass, and needle N concentration and content. In 2003, N fertilization consistently increased 100-needle weight and needle N content when litter layer was removed, but decreased or did not affect those values without litter layer removal. Nitrogen fertilization increased needle N concentration in 2004. The inconsistent effects of N fertilization may be due to the short-term nature of fertilization effects and immobilization of N by organic matter. Rates of white spruce diameter growth and soil mineral N supply in 2004 were related ( R 2 = 0.65, P < 0.001). Vector analysis showed that N fertilization or litter layer removal with intact understory vegetation either increased or did not affect needle N concentration but decreased tree biomass. We conclude that understory control will benefit tree growth in young white spruce stands in the boreal region that have passed the free-to-grow stage. However, N fertilization or litter layer removal alone in bluejoint infested sites may not benefit the trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call