Abstract

We study the vector ambiguity problem and the vector freeness problem in SL(2,Z). Given a finitely generated n×n matrix semigroup S and an n-dimensional vector x, the vector ambiguity problem is to decide whether for every target vector y=Mx, where M∈S, M is unique. We also consider the vector freeness problem which is to show that every matrix M which is transforming x to Mx has a unique factorization with respect to the generator of S. We show that both problems are NP-complete in SL(2,Z), which is the set of 2×2 integer matrices with determinant 1. Moreover, we generalize the vector ambiguity problem and extend to the finite and k-vector ambiguity problems where we consider the degree of vector ambiguity of matrix semigroups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.