Abstract
Neutral buoyancy has been used as an analog for microgravity from the earliest days of human spaceflight. Compared to other options on Earth, neutral buoyancy is relatively inexpensive and presents little danger to astronauts while simulating some aspects of microgravity. Neutral buoyancy removes somatosensory cues to the direction of gravity but leaves vestibular cues intact. Removal of both somatosensory and direction of gravity cues while floating in microgravity or using virtual reality to establish conflicts between them has been shown to affect the perception of distance traveled in response to visual motion (vection) and the perception of distance. Does removal of somatosensory cues alone by neutral buoyancy similarly impact these perceptions? During neutral buoyancy we found no significant difference in either perceived distance traveled nor perceived size relative to Earth-normal conditions. This contrasts with differences in linear vection reported between short- and long-duration microgravity and Earth-normal conditions. These results indicate that neutral buoyancy is not an effective analog for microgravity for these perceptual effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.