Abstract

Deep Gaussian processes (DGPs) upgrade ordinary GPs through functional composition, in which intermediate GP layers warp the original inputs, providing flexibility to model nonstationary dynamics. Two DGP regimes have emerged in recent literature. A “big data” regime, prevalent in machine learning, favors approximate, optimization-based inference for fast, high-fidelity prediction. A “small data” regime, preferred for computer surrogate modeling, deploys posterior integration for enhanced uncertainty quantification (UQ). We aim to bridge this gap by expanding the capabilities of Bayesian DGP posterior inference through the incorporation of the Vecchia approximation, allowing linear computational scaling without compromising accuracy or UQ. We are motivated by surrogate modeling of simulation campaigns with upwards of 100,000 runs—a size too large for previous fully-Bayesian implementations—and demonstrate prediction and UQ superior to that of “big data” competitors. All methods are implemented in the deepgp package on CRAN. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.