Abstract

Histoplasma capsulatum is a pathogenic fungus dependent on dimorphism for virulence. Among the four described Velvet family genes, two of them, Ryp2 and Ryp3, have been shown to be required for dimorphism. It is known that Velvet A (VeA) is necessary for sexual development and toxin production in Aspergillus nidulans. However, the role of the VeA ortholog in H. capsulatum has not yet been explored. Vea1, H. capsulatum homolog of VeA, was studied to determine its role in cleistothecial formation, dimorphism, and virulence. H. capsulatum Vea1 restores cleistothecial formation and partially restores sterigmatocystin production in an A. nidulans veA deletion strain. Furthermore, silencing VEA1 in an H. capsulatum strain capable of forming cleistothecia abolishes cleistothecial formation. Silenced strains also switch to mycelial phase faster, and show impaired switching to the yeast phase once in mycelial phase. Virulence in mice and macrophages is attenuated in VEA1 silenced strains and silenced strains demonstrate increased sensitivity during growth under acidic conditions. These results indicate that H. capsulatum Vea1 shares a similar role in development as VeA. H. capsulatum is also more susceptible to growth in acidic conditions when VEA1 is silenced, which may contribute to the silenced strains’ attenuated virulence in mice and macrophages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call