Abstract

The mechanisms by which the bone marrow microenvironment regulates tumor cell survival are diverse. This study describes the novel observation that in addition to Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) cell lines, primary patient cells also express Hypoxia Inducible Factor-2α (HIF-2α) and Vascular Endothelial Cadherin (VE-cadherin), which are regulated by Abl kinase. Tumor expression of the classical endothelial protein, VE-cadherin, has been associated with aggressive phenotype and poor prognosis in other models, but has not been investigated in hematopoietic malignancies. Targeted knockdown of VE-cadherin rendered Ph+ ALL cells more susceptible to chemotherapy, even in the presence of bone marrow stromal cell (BMSC) derived survival cues. Pre-treatment of Ph+ ALL cells with ADH100191, a VE-cadherin antagonist, resulted in increased apoptosis during in vitro chemotherapy exposure. Consistent with a role for VE-cadherin in modulation of leukemia cell viability, lentiviral-mediated expression of VE-cadherin in Ph- ALL cells resulted in increased resistance to treatment-induced apoptosis. These observations suggest a novel role for VE-cadherin in modulation of chemoresistance in Ph+ ALL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call