Abstract

Calcium signaling plays crucial roles in ion stress tolerance, sporulation and pathogenicity in fungi. Although the signaling pathway mediated by calcineurin and the calcineurin-responsive zinc finger transcription factor Crz1 is well characterized in other fungi, this pathway is not well characterized in the phytopathogenic fungus, Verticillium dahliae. To better understand the role of this calcineurin-dependent transcription factor in V. dahliae, an ortholog of CRZ1, VdCrz1, was identified and characterized functionally. Transcriptional analysis of VdCrz1 and GFP expression driven by the VdCrz1 promoter indicated that VdCrz1 was involved in microsclerotia development. After targeted deletion of VdCrz1, microsclerotia formation and melanin accumulation were impaired. Furthermore, the ΔVdCrz1 mutants were hypersensitive to high concentrations of Ca2+ and cell wall-perturbing agents, such as sodium dodecyl sulfate. The addition of Mg2+ to the medium restores the microsclerotia formation in ΔVdCrz1 mutants. The ΔVdCrz1 mutants exhibited delayed Verticillium wilt symptoms on smoke tree. These results suggest that VdCrz1 plays important roles in Ca2+ signaling, cell wall integrity, microsclerotia development and full virulence in V. dahliae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call