Abstract

Bisphenol A (BPA) is an endocrine disruptor with reproductive toxicity. Further, 1,25-dihydroxyvitamin D3 (VD3) plays an important role in male reproduction by binding vitamin D receptor (VDR) and mediating the pleiotropic biological actions that include spermatogenesis. However, whether VD3/VDR regulates the effect of BPA on Leydig cells (LCs) injury remains unknown. This study aimed to explore the effects of VD on BPA-induced cytotoxicity in mouse LCs. Hereby, LCs treated with BPA, VD3, or both were subjected to the assays of cell apoptosis, proliferation, autophagy, and levels of target proteins. This study unveiled that cell viability was dose-dependently reduced after exposure to BPA. BPA treatment significantly inhibited LC proliferation, induced apoptosis, and also downregulated VDR expression. By jointly analyzing transcriptome data and Comparative Toxicogenomics Database (CTD) data, autophagy signaling pathways related to testicular development and male reproduction were screened out. Therefore, the autophagy phenomenon of cells was further detected. The results showed that BPA treatment could activate cell autophagy, Vdr-/- inhibits cell autophagy, and active VD3 does not have a significant effect on the autophagy of normal LCs. After VD3 and BPA were used in combination, the autophagy of cells was further enhanced, and VD3 could alleviate BPA-induced damage of LCs. In conclusion, this study found that supplementing VD3 could eliminate the inhibition of BPA on VDR expression, further enhance LCs autophagy effect, and alleviate the inhibition of LCs proliferation and induction of apoptosis by BPA, playing a protective role in cells. The research results will provide valuable strategies to alleviate BPA-induced reproductive toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call