Abstract

A product unit is a formal neuron that multiplies its input values instead of summing them. Furthermore, it has weights acting as exponents instead of being factors. We investigate the complexity of learning for networks containing product units. We establish bounds on the Vapnik-Chervonenkis (VC) dimension that can be used to assess the generalization capabilities of these networks. In particular, we show that the VC dimension for these networks is not larger than the best known bound for sigmoidal networks. For higher-order networks we derive upper bounds that are independent of the degree of these networks. We also contrast these results with lower bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.