Abstract

AbstractFull valence bond (VB) calculations for a system of N electrons have always been hindered by the rapidly growing value of N!, which effectively imposes a limit N < 20. Often, however, not all electrons in a molecule are of interest; if we focus on a “group” G of NG electrons (e.g., in an “active” region), then it is NG! that sets the limit. In this work, group function (GF) theory is used to represent a molecule as a collection of interacting electron groups, each with a many‐electron wave function of any chosen form (e.g., VB, MO‐SCF, MCSCF), and each GF is optimized individually in a step‐by‐step process. An efficient VB algorithm allows for up to 14 electrons in any VB group and this combination of GF and VB methods greatly extends the range of feasibility of molecular calculations with VB‐type wave functions: Thus, (1) a large system can be divided into any number of smaller subsystems (groups); (2) each group may contain any chosen number of electrons; (3) the form of any group function (including its level of accuracy) may be chosen at will by the program user. A number of sample calculations are briefly presented. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call