Abstract

ABSTRACTCobalamin (vitamin B12; VB12) is an indispensable nutrient for all living entities in the Earth’s biosphere and plays a vital role in both natural and host environments. Currently in the metagenomic era, gene families of interest are extracted and analyzed based on functional profiles by searching shotgun metagenomes against public databases. However, critical issues exist in applying public databases for specific processes such as VB12 biosynthesis pathways. We developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 biosynthesis gene families of microbial communities in complex environments. VB12Path contains a total of 60 VB12 synthesis gene families, 287,731 sequences, and 21,154 homology groups, and it aims to provide accurate functional and taxonomic profiles of VB12 synthesis pathways for shotgun metagenomes and minimize false-positive assignments. VB12Path was applied to characterize cobalamin biosynthesis gene families in human intestines and marine environments. The results demonstrated that ocean and human intestine had dramatically different VB12 synthesis processes and that gene families belonging to salvage and remodeling pathway dominated human intestine but were lowest in the ocean ecosystem. VB12Path is expected to be a useful tool to study cobalamin biosynthesis processes via shotgun metagenome sequencing in both environmental and human microbiome research.IMPORTANCE Vitamin B12 (VB12) is an indispensable nutrient for all living entities in the world but can only be synthesized by a small subset of prokaryotes. Therefore, this small subset of prokaryotes controls ecosystem stability and host health to some extent. However, critical accuracy and comprehensiveness issues exist in applying public databases to profile VB12 synthetic gene families and taxonomic groups in complex metagenomes. In this study, we developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 communities in complex environments. VB12Path is expected to serve as a valuable tool to uncover the hidden microbial communities producing this precious nutrient on Earth.

Highlights

  • IMPORTANCE Vitamin B12 (VB12) is an indispensable nutrient for all living entities in the world but can only be synthesized by a small subset of prokaryotes

  • The results suggested that about 52% of sequences targeted by VB12 gene families in the core database could be better assigned to their homologs in the full database (Fig. S2), suggesting that small databases not considering their homologs could be a critical issue for functional assignment in metagenomics

  • As a micronutrient that can be synthesized by only a selective group of microbes, VB12 plays important roles in structuring the composition of microbial community in various ecosystems [4, 11, 23, 24], modulating various biogeochemical cycles [9, 25], and controlling the life and death of human intestinal microbes [1]

Read more

Summary

Introduction

IMPORTANCE Vitamin B12 (VB12) is an indispensable nutrient for all living entities in the world but can only be synthesized by a small subset of prokaryotes. This small subset of prokaryotes controls ecosystem stability and host health to some extent. Critical accuracy and comprehensiveness issues exist in applying public databases to profile VB12 synthetic gene families and taxonomic groups in complex metagenomes. We developed a curated functional gene database termed VB12Path for accurate metagenomic profiling of VB12 communities in complex environments.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.