Abstract
Microglial phagocytosis of myelin debris is a crucial process for promoting myelin regeneration in conditions such as multiple sclerosis (MS). Vacuolar-ATPase B2 (V-ATPase B2) has been implicated in various cellular processes, but its role in microglial phagocytosis and its potential impact on MS-related responses remain unclear. In this study, we employed BV-2 murine microglial cells to investigate the influence of V-ATPase B2 on the phagocytosis of myelin debris by microglia. The results revealed that V-ATPase B2 expression increased in response to myelin debris exposure. Overexpression of V-ATPase B2 significantly enhanced BV-2 phagocytosis of myelin debris. Additionally, V-ATPase B2 overexpression shifted microglial polarization towards an anti-inflammatory M2 phenotype, coupled with decreased lysosomal pH and enhanced lysosome degradation capacity. Moreover, endoplasmic reticulum (ER) stress inhibitor, 4-PBA, reversed the effects of V-ATPase B2 silencing on ER stress, M2 polarization, and lysosomal degradation of BV-2 cells. The MAPK pathway was inhibited upon V-ATPase B2 overexpression, contributing to heightened myelin debris clearance by BV-2 cells. Notably, MAPK pathway inhibition partially attenuated the inhibitory effects of V-ATPase B2 knockdown on myelin debris clearance. In conclusion, our findings reveal a pivotal role for V-ATPase B2 in promoting microglial phagocytosis of myelin debris by regulating microglial polarization and lysosomal function via the MAPK signaling pathway, suggesting that targeting V-ATPase B2 may hold therapeutic potential for enhancing myelin debris clearance and modulating microglial responses in MS and related neuroinflammatory disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.