Abstract

BackgroundAppropriate long-term drinking of red wine is associated with a reduced risk of cardiovascular disease. Resveratrol, a well-known SIRT1 activator is considered to be one of the beneficial components contained in red wine, and also developed as a drug candidate. We previously demonstrated that resveratrol protects brain against ischemic stroke in mice through a PPARα-dependent mechanism. Here we report the different effects of the oligomers of resveratrol.MethodsWe evaluated the activation of PPARs by ε-viniferin, a resveratrol dimer, and vaticanol C, a resveratrol tetramer, in cell-based reporter assays using bovine arterial endothelial cells, as well as the activation of SIRT1. Moreover, we tested the metabolic action by administering vaticanol C with the high fat diet to wild-type and PPARα-knockout male mice for eight weeks.ResultsWe show that vaticanol C activates PPARα and PPARβ/δ in cell-based reporter assays, but does not activate SIRT1. ε-Viniferin shows a similar radical scavenging activity as resveratrol, but neither effects on PPARs and SIRT-1. Eight-week intake of vaticanol C with a high fat diet upregulates hepatic expression of PPARα-responsive genes such as cyp4a10, cyp4a14 and FABP1, and skeletal muscle expression of PPARβ/δ-responsive genes, such as UCP3 and PDK4 (pyruvate dehydrogenase kinase, isoform 4), in wild-type, but not PPARα-knockout mice.ConclusionVaticanol C, a resveratrol tetramer, activated PPARα and PPARβ/δ in vitro and in vivo. These findings indicate that activation of PPARα and PPARβ/δ by vaticanol C may be a novel mechanism, affording beneficial effects against lifestyle-related diseases.

Highlights

  • Appropriate long-term drinking of red wine is associated with a reduced risk of cardiovascular disease

  • We evaluated the activation of peroxisome proliferator-activated receptor (PPAR), antioxidant, and SIRT1-activator properties of resveratrol, ε-viniferin, and vaticanol C and found that vaticanol C activates PPARα and PPARβ/δ in cell-based reporter assays, but does not have antioxidant or SIRT1activator properties

  • 8-week intake of vaticanol C with a high fat (HF) diet upregulates hepatic expression of PPARα-responsive genes and skeletal muscle expression of PPARβ/δ-responsive genes in wild-type, but not PPARα-knockout mice. These findings indicate that activation of PPARα and PPARβ/δ by vaticanol C may provide beneficial effects against lifestyle-related diseases

Read more

Summary

Introduction

Appropriate long-term drinking of red wine is associated with a reduced risk of cardiovascular disease. Prevention of lifestyle-related diseases, such as cardiovascular disease, diabetes, and stroke, has become of worldwide interest In such lifestyle-related matters, people pay attention to drugs, and to the functionality of natural chemicals contained in food and drink, such as polyphenols and their polymers. In this context, resveratrol, a phytoalexin and antioxidant polyphenol included in red wine and various plants, is one of the most attrac-. We demonstrated that resveratrol activates peroxisome proliferator-activated receptor (PPAR) α and γ in cellbased reporter assays and protects the brain against ischemic stroke in mice through a PPARα-dependent mechanism [8]. We have focused on PPARs as possible molecular targets of resveratrol in preventing lifestyle-related diseases, while others have studied SIRT1, a NAD+-dependent protein deacetylase, and PGC-1α [13,14,15,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.