Abstract

Polypropylene (PP) rapidly gains scientific attention as fatigue-resistant and lightweight tissue repair and implant material, while emerging laser-sintering based methods for PP processing further allow unlimited versatility of PP specimens and often reduced numbers of process steps, substituting traditional manufacturing approaches. Generally, PP is considered biocompatible for a variety of medical applications while showing superior long-term stability, however, thermoplastic processing of polypropylene may induce the formation of cytotoxic degradation products, necessitating its cytotoxicological assessment. In the present study, PP specimens have been fabricated using warm, quasi-isothermal and complementary cold, non-isothermal powder bed fusion (PBF), allowing processing PP at ambient powder bed temperature of 25 °C for minimizing thermal exposure and the formation of decomposition products. The surface of manufactured specimens has been modified with hybrid coatings consisting of mesoporous inorganic microcrystals of vaterite laden with model biomacromolecules, i.e., fluorescently labelled dextran, demonstrating the stable coating and attachment of dextran-loaded vaterite crystals independent of the applied PBF processing regime. Vaterite coating is degradable and enables the opportunity to endow the surface of PP with sustained release functionalities. Both coated and uncoated specimens demonstrated excellent biocompatibility independent of the applied processing regime, as evaluated in an ex ovo shell-less hen's egg model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.