Abstract

Ena/VASP proteins are powerful actin polymerases that drive the processive elongation of actin filaments. Members of this protein family have been implicated in a variety of important cellular processes including axon guidance, cell migration and adhesion. However, the specific function of these proteins in macroendocytosis, comprising macropinocytosis and phagocytosis remain rather poorly understood. Here, we used the professional phagocyte Dictyostelium discoideum to address the function and dynamics of its only family member VASP in macroendocytosis. Confocal time-lapse imaging revealed that VASP localized prominently in a circumferential narrow band at the advancing rim of the phagocytic cup followed by its aperture-like convergence upon particle internalization. Loss of VASP resulted in substantial defects in both, macropinocytosis of bulk fluid and phagocytosis of yeast particles. Consistently, VASP-deficiency coincided with diminished speed of the protruding rim and an impaired internalization rate. Most intriguingly, after cup closure, VASP condensed at the distal side of internalized phagosomes and initiated localized de-novo actin assembly to propel the phagosome by an actin-rich comet deeper into the cell, resembling intracellular movement of rocketing Listeria cells. In line with these findings, travelled distance and speed of rocketing phagosomes in VASP-deficient cells were markedly impaired.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call