Abstract

Stephania abyssinica is a medicinal plant used in Cameroon alternative medicine to treat arterial hypertension (AHT). Previous in vitro studies demonstrated the endothelium nitric oxide-independent vasorelaxant property of the aqueous extract from Stephania abyssinica (AESA). But its effect on AHT is unknown. The present study was undertaken to explore other vasorelaxant mechanisms and to determine the antihypertensive effects of AESA in male Wistar rats. Phytochemical analysis of AESA was carried out using the liquid chromatography-mass spectrometry (LC-MS) method. The vasorelaxant effects of AESA (1-1000 μg/mL) were studied on rat isolated thoracic aorta rings, in the absence or presence of indomethacin (10 μM) or methylene blue (10 μM). The inhibitory effect of AESA on phenylephrine (PE, 10 μM) or KCl- (60 mM) induced contraction as well as the intracellular calcium release was also evaluated. The in vivo antihypertensive activity of AESA (43, 86, or 172 mg/kg/day) or captopril (20 mg/kg/day) administered orally was assessed in L-NAME- (40 mg/kg/day) treated rats. Blood pressure and heart rate (HR) were measured at the end of each week while serum or urinary nitric oxide (NO), creatinine, and glomerular filtration rate (GFR) were determined at the end of the 6 weeks of treatment, as well as histological analysis of the heart and the kidney. The LC-MS profiling of AESA identified 9 compounds including 7 alkaloids. AESA produced a concentration-dependent relaxation on contraction induced either by PE and KCl, which was significantly reduced in endothelium-denuded vessels, as well as in vessels pretreated with indomethacin and methylene blue. Moreover, AESA inhibited the intracellular Ca2+ release-induced contraction. In vivo, AESA reduced the AHT, heart rate (HR), and ventricular hypertrophy and increased serum NO, urine creatinine, and GFR. AESA also ameliorated heart and kidney lesions as compared to the L-NAME group. These findings supported the use of AESA as a potential antihypertensive drug.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.