Abstract

The ability of the kidney to regulate water balance is impaired with age, although the secretion of vasopressin is maintained in senescent animals. This suggests that the cellular response to antidiuretic hormone is reduced in aging kidney. To test this hypothesis, the relationship between the expression of the vasopressin. V2 receptor mRNA and adenosine 3',5'-cyclic monophosphate (cAMP) accumulation was investigated in the medullary thick ascending limb of Henle's loop (MTAL) of adult and aging rats. Tubular suspensions of MTAL were prepared from 10- and 30-mo-old female WAG/Rij rats. The accumulation of cAMP for maximal concentration of vasopressin was 34% larger in adult than in old animals (9.5 +/- 0.5 pmol/4 min, n = 16, and 7.1 +/- 0.6 pmol/4 min, n = 12, respectively). The concentration of vasopressin corresponding to half-maximal stimulation was similar in the two groups (0.66 +/- 0.20 and 0.52 +/- 0.09 nmol, n = 5, in adult and old animals), indicating comparable sensitivity of the renal cells with age. The age-related impaired response to vasopressin of the V2 receptor was specific for females and was not observed in males. Direct stimulation of adenylyl cyclase by forskolin induced a comparable accumulation of cAMP in adult and senescent rats. The V2 receptor mRNA level in the MTAL was constant between 10 and 30 mo whether the animals were normally hydrated or dehydrated for 2 days. These data indicate that, in MTAL, the age-related impaired cAMP accumulation by vasopressin would be linked to a change either in the translation of V2 mRNA or in posttranslational processing mechanisms or in the coupling between the V2 receptor and adenylyl cyclase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call