Abstract

Activation of V2 receptors (V2R) during antidiuresis increases the permeability of the inner medullary collecting duct to urea and water. Extracellular osmolality is elevated as the concentrating capacity of the kidney increases. Osmolality is known to contribute to the regulation of collecting duct water (aquaporin-2; AQP2) and urea transporter (UT-A1, UT-A3) regulation. AQP1KO mice are a concentrating mechanism knockout, a defect attributed to the loss of high interstitial osmolality. A V2R-specific agonist, deamino-8-D-arginine vasopressin (dDAVP), was infused into wild-type and AQP1KO mice for 7 days. UT-A1 mRNA and protein abundance were significantly increased in the medullas of wild-type and AQP1KO mice following dDAVP infusion. The mRNA and protein abundance of UT-A3, the basolateral urea transporter, was significantly increased by dDAVP in both wild-type and AQP1KO mice. Semiquantitative immunoblots revealed that dDAVP infusion induced a significant increase in the medullary expression of the endoplasmic reticulum (ER) chaperone GRP78. Immunofluorescence studies demonstrated that GRP78 expression colocalized with AQP2 in principal cells of the papillary tip of the renal medulla. Using immunohistochemistry and immunogold electron microscopy, we demonstrate that vasopressin induced a marked apical targeting of GRP78 in medullary principal cells. Urea-sensitive genes, GADD153 and ATF4 (components of the ER stress pathway), were significantly increased in AQP1KO mice by dDAVP infusion. These findings strongly support an important role of vasopressin in the activation of an ER stress response in renal collecting duct cells, in addition to its role in activating an increase in UT-A1 and UT-A3 abundance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.