Abstract
Vasohibin is a recently identified protein that is up-regulated in cultured vascular endothelial cells by vascular endothelial growth factor and fibroblast growth factor 2. It inhibits endothelial cell migration, proliferation, and tube formation, and suppresses angiogenesis in chick chorioallantoic membrane, after subcutaneous implantation of matrigel, and in a tumor xenograft model. This has led to the hypothesis that vasohibin functions as a negative feedback inhibitor of angiogenesis. In this study, we tested that hypothesis in a well-characterized model of retinal neovascularization. In ischemic retina, increased expression of VEGF was accompanied by elevation of vasohibin mRNA and blocking of the increase in vegf mRNA with vegf siRNA significantly attenuated the rise in vasohibin mRNA. In transgenic mice in which the rhodopsin promoter drives expression of VEGF in the retina, there was also a significant increase in vasohibin mRNA. In mice with ischemic retinopathy, there was increased expression of vasohibin in vascular endothelial cells, and vasohibin knockdown caused an increase in neovascularization. Conversely, intraocular injection of recombinant vasohibin or an adenoviral vector containing a vasohibin expression cassette strongly suppressed retinal neovascularization in mice with ischemic retinopathy. Knockdown of vasohibin mRNA in ischemic retina had no significant effect on vegf or vegf receptor 1 mRNA levels but caused a significant elevation in the level of vegf receptor 2 mRNA. These data support the hypothesis that vasohibin acts as a negative feedback regulator of neovascularization in the retina and suggest that suppression of VEGF receptor 2 may play some role in mediating its activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.