Abstract

It has been suggested that platelet-activating factor (PAF) plays a prominent role in the control of glomerular hemodynamics in various physiological and pathological conditions. We examined the direct effect of PAF on rabbit glomerular afferent arterioles (Af-Arts) microperfused in vitro and tested whether endothelium-derived relaxing factor/nitric oxide (EDNO) and cyclooxygenase products are involved in its actions. In nanomolar concentrations PAF caused dose-dependent constriction of Af-Arts, with the maximum constriction being 34 +/- 10% at 4 x 10(-8) M (n = 9, P < 0.001). The constriction was blunted by cyclooxygenase inhibition (11 +/- 6%, n = 7, P < 0.05) but augmented by EDNO inhibition (76 +/- 14%, n = 8, P < 0.005). To study a possible vasodilator effect of PAF, Af-Arts were preconstricted with norepinephrine and increasing concentrations of PAF added to the lumen. At picomolar concentrations (lower than those that caused constriction), PAF produced dose-dependent vasodilation that was unaffected by cyclooxygenase inhibition but was abolished by EDNO synthesis inhibition. Both PAF-induced constriction and dilation of Af-Arts were blocked by a PAF receptor antagonist. This study demonstrates that PAF has a receptor-mediated biphasic effect on rabbit Af-Arts, dilating them at low concentrations while constricting them at higher concentrations. Our results suggest that PAF's vasodilator action may be due to production of EDNO, while its constrictor action is mediated at least in part through cyclooxygenase products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.