Abstract

Previous research has indicated that serotonergic and α-adrenergic receptors in peripheral vasculature are affected by exposure of cattle grazing toxic endophyte-infected (E+; Epichlöe coenophialia) tall fescue (Lolium arundinaceum). The objective of this experiment was to determine the period of time necessary for the vascular effects of ergot alkaloids to subside. Two experiments were conducted to investigate changes in vascular contractile response and vasoconstriction over time relative to removal from an ergot alkaloid-containing E+ tall fescue pasture. In Experiment 1, lateral saphenous vein biopsies were conducted on 21 predominantly Angus steers (357 ± 3 kg body weight) at 0 (n = 6), 7 (n = 6), 14 (n = 5), or 28 days (n = 4) after removal from grazing pasture (3.0 ha; endpoint ergovaline + ergovalinine = 1.35 mg/kg DM) for 126 days. In Experiment 2, lateral saphenous veins were biopsied from 24 Angus-cross steers (361 ± 4 kg body weight) at 0, 21, 42, and 63 days (n = 6 per time point) following removal from grazing tall fescue pastures (3.0 ha; first 88 days endpoint ergovaline + ergovalinine = 0.15 mg/kg DM; last 18 days endpoint ergovaline + ergovalinine = 0.57 mg/kg DM) for 106 total days. Six steers (370 ± 18 kg body weight) off of bermudagrass pasture for the same time interval were also biopsied on Day 0 and Day 63 (n = 3 per time point). Additionally, in Experiment 2, cross-sectional ultrasound scans of caudal artery at the fourth coccygeal vertebra were taken on Days 0, 8, 15, 21, 29, 36, 42, and 45 to determine mean artery luminal area to evaluate vasoconstriction. In both experiments, steers were removed from pasture and housed in a dry lot and fed a corn silage diet for the duration of biopsies and ultrasound scans. Biopsied vessels used to evaluate vasoactivity were cleaned, incubated in a multimyograph, and exposed to increasing concentrations of 4-Bromo-3,6-dimethoxybenzocyclobuten-1-yl) methylamine hydrobromide (TCB2; 5HT2A agonist), guanfacine (GF; α2A-adrenergic agonist), and (R)-(+)-m-nitrobiphenyline oxalate (NBP; α2C-adrenergic agonist) in both experiments and ergovaline (ERV) and ergotamine (ERT) in Experiments 1 and 2, respectively. In Experiment 1, days off pasture × agonist concentration was not significant (p > 0.1) for all four compounds tested. In Experiment 2, GF, NBP, TCB2 and ERT were significant for days off pasture × agonist concentration interaction (p < 0.02) and vasoactivity increased over time. Vasoactivity to agonists was reduced (p < 0.05) when steers were initially removed from E+ tall fescue pasture compared to bermudagrass, but did not differ by Day 63 for any variable. Luminal areas of caudal arteries in steers grazed on E+ tall fescue relaxed and were similar to steers that had grazed bermudagrass for 36 days on non-toxic diet (p = 0.15). These data demonstrate changes in peripheral vasoactivity and recovery from vasoconstriction occur beyond five weeks off toxic pasture and 5HT2A receptors appear to be more dramatically affected in the lateral saphenous vein by grazing E+ tall fescue pasture than adrenergic receptors.

Highlights

  • Ergot alkaloids produced by the endophyte Epichloë coenophiala that is found in tall fescue (Lolium arundiaceum) can alter cardiovascular function [1] and induce constriction in vascular tissue of extremities of animals grazing tall fescue [2]

  • Following removal of steers from the toxic endophyte-infected tall fescue pasture, serum prolactin levels increased with the number of days off of pasture (p = 0.01) for Experiment 1 (Figure 1a)

  • Prolactin went up 21 days after removal from pasture when compared to Day 0 (p < 0.05) in Experiment 2, but concentrations decreased on Days 42 and 63 and were not greater than Day 0

Read more

Summary

Introduction

Ergot alkaloids produced by the endophyte Epichloë coenophiala that is found in tall fescue (Lolium arundiaceum) can alter cardiovascular function [1] and induce constriction in vascular tissue of extremities of animals grazing tall fescue [2]. When cattle from tall fescue systems are transported to feedyards, physiological stressors from ergot alkaloid toxicosis can be combined with the stress of transport to increase the risk of morbidity and death loss [5]. Previous vascular work has demonstrated a decreased vasoactivity associated with prior exposure to ergot alkaloids through grazing at the peripheral [6,7] and gastrointestinal vascular beds [8]. This suppressed vasoactivity was not evident in cattle that had been removed from an E+ tall fescue pasture treatment and finished on an ergot alkaloid-free diet for up to 103 days prior to slaughter [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call