Abstract
A general Ornstein-Uhlenbeck (OU) process is obtained upon replacing the Brownian motion appearing in the defining stochastic differential equation with a general Levy process. Certain properties of the Brownian ancestor are distribution-free and carry over to the general OU process. Explicit expressions are obtainable for expected values of a number of functionals of interest also in the general case. Special attention is paid here to gamma- and Poisson-driven OU processes. The Brownian, Poisson, and gamma versions of the OU process are compared in various respects; in particular, their aptitude to describe stochastic interest rates is discussed in view of some standard issues in financial and actuarial mathematics: prices of zero-coupon bonds, moments of present values, and probability distributions of present values of perpetuities. The problem of possible negative interest rates finds its resolution in the general setup by taking the driving Levy process to be nondecreasing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.