Abstract

BackgroundTrastuzumab is a drug that targets the receptor tyrosine kinase HER2 and is essential for the treatment of HER2-positive breast cancer. Resistance to the drug leads to severe consequences, including disease recurrence, tumor enlargement, and metastasis. We hypothesized that trastuzumab treatment might be associated with phenotypic switching in HER2-positive breast cancer cells (BCCs), enabling them to escape and survive the effect of trastuzumab.MethodsWe conducted comprehensive immunophenotyping to detect phenotypic changes in HER2-positive BCCs treated with trastuzumab, based on criteria determined a priori. Based on immunophenotyping results, we characterized the vascular phenotypes of HER2-positive BCCs by western blotting, real-time RT-PCR, and tube formation assay. The vascular phenotype of tumor cells from clinical samples was evaluated by staining with periodic acid-Schiff and an anti-CD31 antibody. We explored small molecule inhibitors that suppress tube formation and determined the inhibitory mechanism.ResultsOut of 242 cell surface antigens, 9 antigens were significantly upregulated and 3 were significantly downregulated by trastuzumab treatment. All upregulated antigens were related to endothelial and stem cell phenotypes, suggesting that trastuzumab treatment might be correlated to switching to a vascular phenotype, namely, vasculogenic mimicry (VM). Several VM markers were upregulated in trastuzumab-treated cells, but these cells did not form tubes on Matrigel, a functional hallmark of VM. Upon analysis of three trastuzumab-resistant HER2-positive cell lines, we found that all three cell lines showed tube formation on Matrigel in the presence of angiogenic growth factors including EGF, FGF2, IGF1, or VEGF. Clinically, VM channels significantly increased in surviving cancer cell clusters of surgically removed tumors pretreated with trastuzumab and chemotherapy compared to both surgically removed tumors without prior systemic treatment and tumors biopsied before presurgical treatment with trastuzumab. Finally, we found that salinomycin completely suppressed VM in all three trastuzumab-resistant cell lines through disruption of actin cytoskeletal integrity.ConclusionsVM promotes metastasis and worsens patient outcomes. The present study indicates that HER2-positive BCCs can exhibit VM in an angiogenic microenvironment after eventually acquiring trastuzumab resistance. The clinical finding supports this in vitro observation. Thus, targeting VM might provide a therapeutic benefit to patients with HER2-positive breast cancer.

Highlights

  • Trastuzumab is a drug that targets the receptor tyrosine kinase Human epidermal growth factor receptor-2 (HER2) and is essential for the treatment of HER2-positive breast cancer

  • Comprehensive immunophenotyping of Tzm-loaded HER2+ breast cancer cells Initially, we assumed that a phenotypic change as a result of short-term loading of Tzm might represent a primary change, it might be subtle; on the other hand, phenotypic changes associated with long-term loading of Tzm might include many detectable secondary changes that mask a significant primary change

  • To determine why tubes did not form, we explored the expression of several angiogenic receptors: phosphorylation of both EPH receptor A2 and its functional counterpart (EPH receptor A4) was suppressed, presumably because phosphorylation of EPH receptors mediated by the HER2 tyrosine kinase was inhibited by Tzm [20]

Read more

Summary

Introduction

Trastuzumab is a drug that targets the receptor tyrosine kinase HER2 and is essential for the treatment of HER2-positive breast cancer. Resistance to the drug leads to severe consequences, including disease recurrence, tumor enlargement, and metastasis. We hypothesized that trastuzumab treatment might be associated with phenotypic switching in HER2-positive breast cancer cells (BCCs), enabling them to escape and survive the effect of trastuzumab. The aggressive phenotypes of HER2+ breast cancer include rapid tumor growth and a high incidence of metastasis to vital organs, such as the liver and the brain. The prognosis of patients with HER2+ breast cancer was poor compared with that of patients with HER2-negative breast cancer until trastuzumab (Tzm) was developed for the treatment of this devastating disease [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call