Abstract

This study sought to examine whether cardiovascular performance during exercise, assessed using the vascular-ventricular coupling index (VVC), was affected by exaggerated blood pressure (EBP) responses in endurance-trained athletes. Subjects were middle-aged endurance-trained men and women. Blood pressure measurements and left ventricular echocardiography were performed in a semiupright position at rest and during steady-state cycling at workloads that elicited 100-110 beats/min (stage 1) and 130-140 beats/min (stage 2). These data were used to calculate effective arterial elastance index (EaI), left ventricular end-systolic elastance index (ELVI), and their ratio (VVC). Additional measurements of left ventricular volumes and function (i.e., stroke volume, cardiac output, and longitudinal strain) and indirect assessments of peripheral vascular function (i.e., total arterial compliance and peripheral vascular resistance) were examined. Fourteen subjects with EBP (EBP+, 50% men) and 14 sex-matched subjects without EBP (EBP-) participated, with results presented as EBP+ versus EBP-. EaI and ELVI increased from rest to exercise while VVC decreased, but only ELVI was different between groups at stage 1 [7.6 (1.8) vs. 6.4 (1.0) mmHg·ml-1·m-2, P = 0.045] and stage 2 [10.3 (1.6) vs. 8.0 (1.7) mmHg·ml-1·m-2, P < 0.001]. Additional comparisons revealed no group difference in the contribution of the Frank-Starling mechanism or left ventricular and peripheral vascular function during exercise. The cardiovascular adjustment to exercise in athletes with EBP is achieved through a matched increase in both EaI and ELVI, and the absence of between-group differences in left ventricular or peripheral vascular function suggests that other factors may contribute to the EBP response.NEW & NOTEWORTHY Cardiovascular performance during submaximal exercise, assessed using vascular-ventricular coupling, is unaffected by exaggerated blood pressure (EBP) responses in endurance-trained athletes. The underlying mechanisms of EBP in athletes remain unknown as changes in left ventricular and peripheral vascular function during exercise were similar in athletes with and without EBP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call