Abstract

Vascular dysfunction is an important phenomenon in hypertension. We hypothesized that angiotensin II (AngII) affects transcriptome in the vasculature in a region-specific manner, which may help to identify genes related to vascular dysfunction in AngII-induced hypertension. Mesenteric artery and aortic transcriptome was profiled using Illumina WG-6v2.0 chip in control and AngII infused (490 ng/kg/min) hypertensive mice. Gene set enrichment and leading edge analyses identified Sphingosine kinase 1 (Sphk1) in the highest number of pathways affected by AngII. Sphk1 mRNA, protein and activity were up-regulated in the hypertensive vasculature. Chronic sphingosine-1-phosphate (S1P) infusion resulted in a development of significantly increased vasoconstriction and endothelial dysfunction. AngII-induced hypertension was blunted in Sphk1−/− mice (systolic BP 167 ± 4.2 vs. 180 ± 3.3 mmHg, p < 0.05), which was associated with decreased aortic and mesenteric vasoconstriction in hypertensive Sphk1−/− mice. Pharmacological inhibition of S1P synthesis reduced vasoconstriction of mesenteric arteries. While Sphk1 is important in mediating vasoconstriction in hypertension, Sphk1−/− mice were characterized by enhanced endothelial dysfunction, suggesting a local protective role of Sphk1 in the endothelium. S1P serum level in humans was correlated with endothelial function (arterial tonometry). Thus, vascular transcriptome analysis shows that S1P pathway is critical in the regulation of vascular function in AngII-induced hypertension, although Sphk1 may have opposing roles in the regulation of vasoconstriction and endothelium-dependent vasorelaxation.

Highlights

  • Hypertension is a pathogenetically complex disorder affecting more than 1 billion people worldwide[1]

  • Among top 200 RNA transcripts associated with angiotensin II (Ang II)-induced hypertension in either of the examined tissues, 3 genes were previously associated with blood pressure (BP) in GWA cohort studies

  • While Sphingosine kinase 1 (Sphk1)−/− was linked to concomitant enhancement of endothelial dysfunction with opposing decreased vascular contractility and moderately reduced blood pressure, it had no significant effect on intima media – thickness hypertrophy in Ang II-induced hypertension (Fig. 5c,d)

Read more

Summary

Introduction

Hypertension is a pathogenetically complex disorder affecting more than 1 billion people worldwide[1]. An independent experiment focusing on different layers of thoracic aorta showed that Ang II effects on Sphk[1] expression in vivo were more pronounced in the media layer (Induction Fold (IF) = 14.2, p < 0.05) as compared to adventitia layer (IF = 3.6, p = 0.077) or endothelial cell -enriched fraction representing intima (IF = 4.5, p < 0.05, Fig. 2e).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call