Abstract

This study explores the bioprinting of a smooth muscle cell-only bioink into ionically crosslinked oxidized methacrylated alginate (OMA) microgel baths to create self-supporting vascular tissues. The impact of OMA microgel support bath methacrylation degree and cell-only bioink dispensing parameters on tissue formation, remodeling, structure and strength was investigated. We hypothesized that reducing dispensing tip diameter from 27 G (210μm) to 30 G (159μm) for cell-only bioink dispensing would reduce tissue wall thickness and improve the consistency of tissue dimensions while maintaining cell viability. Printing with 30 G tips resulted in decreased mean wall thickness (318.6μm) without compromising mean cell viability (94.8%). Histological analysis of cell-only smooth muscle tissues cultured for 14 d in OMA support baths exhibited decreased wall thickness using 30 G dispensing tips, which correlated with increased collagen deposition and alignment. In addition, a TUNEL assay indicated a decrease in cell death in tissues printed with thinner (30 G) dispensing tips. Mechanical testing demonstrated that tissues printed with a 30 G dispensing tip exhibit an increase in ultimate tensile strength compared to those printed with a 27 G dispensing tip. Overall, these findings highlight the importance of precise control over bioprinting parameters to generate mechanically robust tissues when using cell-only bioinks dispensed and cultured within hydrogel support baths. The ability to control print dimensions using cell-only bioinks may enable bioprinting of more complex soft tissue geometries to generatein vitrotissue models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.