Abstract

Radiation treatment of arteriovenous malformations (AVMs) has a slow and progressive vaso-occlusive effect. Some studies suggested the possible role of vascular structure in this process. A detailed biomathematical model has been used, where the morphological, biophysical and hemodynamic characteristics of intracranial AVM vessels are faithfully reproduced. The effect of radiation on plexiform and fistulous AVM nidus vessels was simulated using this theoretical model. The similarities between vascular and electrical networks were used to construct this biomathematical AVM model and provide an accurate rendering of transnidal and intranidal hemodynamics. The response of different vessels to radiation and their obliteration probability as a function of different angiostructures were simulated and total obliteration was defined as the probability of obliteration of all possible vascular pathways. The dose response of the whole AVM is observed to depend on the vascular structure of the intra-nidus AVM. Furthermore, a plexiform AVM appears to be more prone to obliteration compared with an AVM of the same size but having more arteriovenous fistulas. Finally, a binomial model was introduced, which considers the number of crucial vessels and is able to predict the dose response behavior of AVMs with a complex vascular structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call