Abstract
Previously, it was shown that individuals with good baseline (a priori) endothelial function in isolated (in vitro) renal arteries developed less renal damage after 5/6 nephrectomy (5/6Nx; Gschwend S, Buikema H, Navis G, Henning RH, de Zeeuw D, van Dokkum RP. J Am Soc Nephrol 13: 2909-2915, 2002). In this study, we investigated whether preexisting glomerular vascular integrity predicts subsequent renal damage after 5/6Nx, using in vivo intravital microscopy and in vitro myogenic constriction of small renal arteries. Moreover, we aimed to elucidate the role of renal ANG II type 1 receptor (AT1R) expression in this model. Anesthetized rats underwent intravital microscopy to visualize constriction to ANG II of glomerular afferent and efferent arterioles, with continuous measurement of blood pressure, heart rate, and renal blood flow. Thereafter, 5/6Nx was performed, interlobar arteries were isolated from the extirpated kidney, and myogenic constriction was assessed in a perfused vessel setup. Blood pressure and proteinuria were assessed weekly for 12 wk, and focal glomerulosclerosis (FGS) was determined at the end of study. Relative expression AT1R in the kidney cortex obtained at 5/6Nx was determined by PCR. Infusion of ANG II induced significant constriction of both afferent and efferent glomerular arterioles, which strongly positively correlated with proteinuria and FGS at 12 wk after 5/6Nx. Furthermore, in vitro measured myogenic constriction of small renal arteries negatively correlated with proteinuria 12 wk after 5/6Nx. Moreover, in vivo vascular reactivity negatively correlated with in vitro reactivity. Additionally, relative expression of AT1R positively correlated with responses of glomerular arterioles and with markers of renal damage. Both in vivo afferent and efferent responses to ANG II and in vitro myogenic constriction of small renal arteries in the healthy rat predict the severity of renal damage induced by 5/6Nx. This vascular responsiveness is highly dependent on AT1R expression. Intraorgan vascular integrity may provide a useful tool to guide the prevention and treatment of renal end-organ damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.