Abstract
Vascular smooth muscle cell polyploidization occurs during normal development and is enhanced under physiologic stress, but the mechanism of this cell cycle has not been explored. We show via time-lapse video imaging and immunofluorescence analyses that primary vascular smooth muscle cells (VSMC) undergo an endomitotic-type cell cycle, including a normal progression through part of mitosis. Mononuclear polyploid cells are generated by defects in sister chromatid separation and/or segregation, and cellular binucleation occurs by reversal of cytokinesis. To obtain further leads to regulators involved, we examined the chromosomal passenger proteins, Aurora B, inner centromere protein and Survivin, and concluded that Aurora B and inner centromere protein are normally colocalized in centromeres, the midzone, and the midbody during mitosis. Survivin, however, is dim and diffused; it does not colocalize with either Aurora B or inner centromere protein in VSMC, which could account for defects in sister chromatid separation and/or segregation and reversal of cytokinesis. In accordance with the reported dependency of Aurora B activity on Survivin, the Aurora B substrate, vimentin, is not phosphorylated during cytokinesis. Finally, the data show that ectopically expressed Survivin inhibits polyploidization in vascular smooth muscle cells. Hence, aberrant chromosome passenger protein activity and endomitosis are associated with VSMC polyploidization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.