Abstract

Vascular calcification (VC) is the pathological precipitation of calcium salts in the walls of blood vessels. It is a risk factor for cardiovascular events and their associated mortality. VC can be observed in a variety of cardiovascular diseases and is most prominent in diseases that are associated with dysregulated mineral homeostasis such as in chronic kidney disease. Local factors and mechanisms underlying VC are still incompletely understood, but it is appreciated that VC is a multifactorial process in which vascular smooth muscle cells (VSMCs) play an important role. VSMCs participate in VC by releasing extracellular vesicles (EVs), the extent, composition, and propensity to calcify of which depend on VSMC phenotype and microenvironment. Currently, no targeted therapy is available to treat VC. In-depth knowledge of molecular players of EV release and the understanding of their mechanisms constitute a vital foundation for the design of pharmacological treatments to combat VC effectively. This review highlights our current knowledge of VSMCs in VC and focuses on the biogenesis of exosomes and the role of the neutral Sphingomyelinase 2 (nSMase2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.