Abstract

Hyperinsulinemia (HI) and insulin resistance (IR) are frequently associated with hypertension and atherosclerosis. However, the exact roles of HI and IR in the development of hypertension are unclear. Mitogen-activated protein kinases (MAPK) are well-characterized intracellular mediators of cell proliferation. In this study, we examined the contribution of MAPK pathway in insulin-stimulated mitogenesis using primary vascular smooth muscle cells (VSMCs) isolated from aortas of normotensive Wistar-Kyoto rats (WKY) and spontaneous hypertensive rats (SHR). VSMCs were grown to confluence in culture, serum starved, and examined for DNA synthesis (using [3H]thymidine (TDR), immunoprecipitated MAPK activity, and MAPK phosphatase (MKP-1) induction). Basal rate of TDR incorporation into DNA was twofold higher in SHR compared with WKY (P < 0.005). Insulin caused a dose-dependent increase in TDR incorporation (150% over basal levels with 100 nM in 12 h). Stimulation was sustained for 24 h with a decline toward basal in 36 h. Pretreatment with insulin-like growth factor I (IGF-I) receptor antibody did not abolish mitogenesis mediated by 10-100 nM insulin, suggesting that insulin effect is mediated via its own receptors. Insulin had a small mitogenic effect in WKY (33% over basal). Insulin-stimulated mitogenesis was accompanied by a dose-dependent increase in MAPK activity in SHR, with a peak activation (>2-fold over basal) between 5 and 10 min with 100 nM insulin. Insulin had very small effects on MAPK activity in WKY. In contrast, serum-stimulated MAPK activation was comparable in WKY and SHR. Pretreatment with MEK inhibitor, PD-98059, completely blocked insulin's effect on MAPK activation and mitogenesis. Inhibition of phosphatidylinositol 3-kinase with wortmannin also prevented insulin's effects on MAPK activation and mitogenesis. In WKY, insulin and IGF-I treatment resulted in a rapid induction of MKP-1, the dual-specificity MAPK phosphatase. In contrast, VSMCs from SHR were resistant to insulin with respect to MPK-1 expression. We conclude that insulin is mitogenic in SHR, and the effect appears to be mediated by sustained MAPK activation due to impaired insulin-mediated MKP-1 mRNA expression, which may act as an inhibitory feedback loop in attenuating MAPK signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call