Abstract

Transplant arteriosclerosis is a leading cause of late allograft loss. Medial smooth muscle cell (SMC) apoptosis is considered to be an important event in transplant arteriosclerosis. However, the precise contribution of medial SMC apoptosis to transplant arteriosclerosis and the underlying mechanisms remain unclear. We transferred wild-type p53 to induce apoptosis of cultured SMCs. We found that apoptosis induces the production of SDF-1α from apoptotic and neighboring viable cells, resulting in increased SDF-1α in the culture media. Conditioned media from Ltv-p53-transferred SMCs activated PI3K/Akt/mTOR and MAPK/Erk signaling in a SDF-1α-dependent manner and thereby promoted mesenchymal stem cell (MSC) migration and proliferation. In a rat aorta transplantation model, lentivirus-mediated BclxL transfer selectively inhibits medial SMC apoptosis in aortic allografts, resulting in a remarkable decrease of SDF-1α both in allograft media and in blood plasma, associated with diminished recruitment of CD90(+)CD105(+) double-positive cells and impaired neointimal formation. Systemic administration of rapamycin or PD98059 also attenuated MSC recruitment and neointimal formation in the aortic allografts. These results suggest that medial SMC apoptosis is critical for the development of transplant arteriosclerosis through inducing SDF-1α production and that MSC recruitment represents a major component of vascular remodeling, constituting a relevant target and mechanism for therapeutic interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.