Abstract
Inherent mechanisms leading to vascular smooth muscle cells (VSMC) alterations in obesitylinked type 2 diabetes (T2D) situation remain to be clarified. This study evaluates the impact of supernatant of adipocytes extracted from mice fed high-fat-diets (HFD) on the proliferation and apoptosis of VSMC. Adipocytes were extracted from visceral white fat pads of male and female C57Bl6 mice showing different stages of metabolic alterations after 20 weeks of vegetal or animal HFD feeding. These cells were stimulated or not with insulin or glucose to condition VSMC media. After 24h of stimulation with adipocyte supernatants (AdS), VSMC proliferation and sustainability were assessed in the absence and presence of AdS. CD36 and insulin receptor mRNA levels were also evaluated. Proliferation and viability of VSMC were significantly modulated by the nature of the AdS used and the gender of mice from which adipocytes have been extracted. The most extensive effects on VSMC were triggered by adipocytes from males fed animal HFD and females fed vegetal HFD. These effects were concurrent with increased leptin concentration and decreased adiponectin levels in AdS. In addition, adipocytes of HFD-fed mice increased caspase-3 activity and apoptosis in VSMC. Significant up-regulation of CD36 mRNA was also found in these cells. Adipocytes of HFD-fed mice induce VSMC alterations. These changes involved mouse gender, most probably correlated to the diet-induced adipocyte secretion profile. Greater sensitivity to AdS effects in VSMC raises concerns about the more frequent cardiovascular events associated with obesity in the presence of T2D, which impairs adipocyte activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.